# Partially Acoustic Dark Matter & Large Scale Structure

#### Yuhsin Tsai University of Maryland

JHEP1612(2016)108, Zackaria Chacko, Yanou Cui, Sungwoo Hong, and Takemichi Okui,YT arXiv: 1611.05879, Valentina Prilepina and YT

DM+DE+M/Anti-M asymmetry, NCTS, Dec 31 2016

#### We've been trying very hard to see DM



#### Maybe DM just doesn't couple to SM?



#### No, everything couples to gravity SIDM < Dark Dark Radiation Matter Proton Neutrino Metric Compton Scattering Electron Photon Coulomb Scattering

#### Dark sector in Large Scale Structure physics





#### CMB Spectrum

2003







#### Matter Power Spectrum

Three ways to measure the spectrum

2004





#### Matter Power Spectrum

2004



Three ways to measure the spectrum

Assuming a DM model ( $\Lambda$ CDM), fix the parameters using CMB, predict the power spectrum today



#### Matter Power Spectrum

2004



Three ways to measure the spectrum

Assuming a DM model ( $\Lambda$ CDM), fix the parameters using CMB, predict the power spectrum today

Map the galaxy distribution, then fit the DM distribution



#### Matter Power Spectrum

2004



Three ways to measure the spectrum

Assuming a DM model ( $\Lambda$ CDM), fix the parameters using CMB, predict the power spectrum today

Map the galaxy distribution, then fit the DM distribution

Map the DM distribution directly using weak lensing experiments



#### Matter Power Spectrum

2015

2004



# The Sigma8 problem



~ amplitude of matter fluctuation on the scale of  $8 h^{-1}$ Mpc.

The smallest structure to study without significant non-linearity effects

# The Sigma8 problem

#### Two $\sigma_8$ measurements: CMB + $\Lambda$ CDM vs. Weak Lensing



The CFHTLenS & CMB results deviate by ~  $2 - 3\sigma$  .

# Results from galaxy counts

Planck 1303.5080



# Ho problem



Two H<sub>0</sub> measurements  $CMB + \Lambda CDM$ . VS. Local Measurements  $H_0^{\text{Planck}} = 67.3 \pm 0.7 \,\mathrm{km s^{-1} Mpc^{-1}}$  $H_0^{\rm HST} = 73.02 \pm 1.79 \,\rm km s^{-1} Mpc^{-1}$  $> 3\sigma$  Discrepancy

CMB ΛCDM+N<sub>eff</sub>
 H0LiCOW
 CMB ΛCDM
 R16

Bernal et. al. 1607.05617

#### Puzzles of Large Scale Structure

Poulin et. al. 1606.02073



Comparing to LCDM model, we want to obtain a

Smaller density perturbation

Larger Hubble expansion

at the late time universe

#### Puzzles of Large Scale Structure

Poulin et. al. 1606.02073



Comparing to LCDM model, we want to obtain a

Smaller density perturbation

Larger Hubble expansion

at the late time universe

#### One solution: Partially Acoustic DM



DISTRIBUTION OF GALAXIES IN OUR UNIVERSE. CREDIT: SDSS



#### For the acoustic oscillation to exist

We need the DM-DR scattering to remain non-decoupled



$$\Gamma \simeq \hat{\alpha}^2 \ln(\hat{\alpha}^{-1}) \frac{T_D^2}{m_{\rm DM}}$$

Same temp-dependence as Hubble in the radiation-dominant era



# Tightly coupled dark radiation

We need the DM-DR scattering to remain non-decoupled



The same coupling keeps dark fermions/photon a tightly coupled fluid

#### Solving H0 problem with extra dark radiation

#### Bernal et. al. 1607.05617



Can explain the larger  $H_0$  by including  $\Delta N_{\rm eff} > 0.4$  dark radiation Adam Riess et.al. 1604.01424

#### Dark fluid is better than FS-radiation





Planck TT, TE, and EE likelihoods

 $\Delta N_{\rm eff}$  bound on a tightly coupled fluid is weaker

|                                | TT, TE, EE                    |                                                                  | TT-only                       |                                                                        |
|--------------------------------|-------------------------------|------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------|
|                                | varying $Y_p$                 | fixed $Y_p$                                                      | varying $Y_p$                 | fixed $Y_p$                                                            |
| $N_{ m eff}$<br>$N_{ m fluid}$ | $2.78^{+0.30}_{-0.35} < 0.88$ | $\begin{array}{c} 2.99\substack{+0.30\\-0.29}\\<1.06\end{array}$ | $2.87^{+0.76}_{-0.74} < 3.93$ | $\begin{array}{c} 2.94\substack{+0.71 \\ -0.69} \\ < 2.65 \end{array}$ |
|                                |                               | $(2\sigma)$                                                      |                               |                                                                        |

#### Reconcile H0, but makes sigma8 worse



#### DM-DR scattering suppresses Sigma8



#### Structure Formation with DAO



A cartoon produced by the BOSS project showing the spheres of baryons around the initial dark matter clumps

#### Evolution of the Large Scale Structures



# In the tightly coupled DM-DR limit

We can simplify the evolution of DM perturbation

$$\begin{split} \ddot{\delta}_{D} + \frac{\dot{a}}{a} \frac{R}{1+R} \dot{\delta}_{D} + \frac{k^{2}}{3(1+R)} \delta_{D} \simeq -k^{2} \psi \\ \hline \text{metric perturbation} \\ \delta_{D} \equiv \frac{\delta \rho_{D}}{\bar{\rho_{D}}} \\ \delta_{D} \equiv \frac{\delta \rho_{D}}{\bar{\rho_{D}}} \\ P(k)_{s} \propto k^{-3} \langle \delta_{s}(k,a)^{2} \rangle \\ \end{split}$$

# In the tightly coupled DM-DR limit

We can simplify the evolution of DM perturbation

$$\ddot{\delta}_D + \frac{\dot{a}}{a} \frac{R}{1+R} \dot{\delta}_D + \frac{k^2}{3(1+R)} \delta_D \simeq -k^2 \psi$$

$$\delta_D \equiv \frac{\delta \rho_D}{\bar{\rho_D}}$$

 $P(k)_s \propto k^{-3} \langle \delta_s(k,a)^2 \rangle$ 

$$R \equiv \frac{3\rho_D}{4\rho_R}$$
  
Parametrize the ``mass'' of DM-DR fluid

#### Radiation Domination, R << 1

Density perturbation oscillates => No structure grows

$$\ddot{\delta}_D + \frac{\dot{a}}{a} \frac{R}{1+R} \dot{\delta}_D + \frac{k^2}{3(1+R)} \delta_D \simeq -k^2 \psi \quad \text{small in RD}$$

The density perturbation oscillates as a harmonic oscillator! Same physics as the baryon acoustic oscillation



#### Matter Domination , R >> 1

No oscillation => Linear growth

$$\ddot{\delta}_D + \frac{\dot{a}}{a} \frac{R}{1+R} \dot{\delta}_D + \frac{k^2}{3(1+R)} \delta_D \simeq -k^2 \psi$$

No oscillation, no damping from the DR scattering Same structure formation as cold DM



#### Quasi-Acoustic Dark Matter

We need a small DM coupling for the right  $\sigma_8$  suppression



Manuel A. Buen-Abad, Gustavo Marques-Tavares, and Martin Schmaltz (2015)

Julien Lesgourgues, Gustavo Marques-Tavares, and Martin Schmaltz (2015)

#### Partially-Acoustic Dark Matter



 $r \equiv \Omega_2 / \Omega_{\rm DM}$ 

#### Solving Sigma8 problem with PAcDM



$$r \equiv \Omega_2 / \Omega_{\rm DM}$$

#### Solving Sigma8 problem with PAcDM



Need ~2% acoustic DM to solve the  $\sigma_8$  problem

#### 2% density is easy to obtained

When both DM particles are WIMP-like and having thermal freeze out through a heavy mediator

$$\frac{\Omega_2}{\Omega_1} \simeq \left(\frac{m_2}{m_1}\right)^2$$

Only need  $m_1 \simeq 7 m_2$  to obtain the 2% ratio (assuming equal couplings)

# Slowing Down the Structure Formation



A cartoon produced by the BOSS project showing the spheres of baryons around the initial dark matter clumps

# Smaller suppression at the CMB time



Correction to the power spectrum is smaller during the CMB time. Why?

#### In the Quasi-Acoustic Oscillation case



#### In the Partially-Acoustic Oscillation case



Structure grows slower comparing to CDM Smaller correction to the CMB spectrum

#### Correction to the CMB spectrum



The pressure from dark fluid suppresses the compression peaks and enhances the expansion peaks

When r = 2%, the correction to CMB is less then ~ 2%, smaller then > 5% error bar in Planck result

#### Clear answer from future experiments



# A clue to even deeper physics?



arXiv: 1611.05879, Valentina Prilepina and YT

# CMB Lensing

#### Planck. 1502.01591



The smallest error bar (Planck) is 5% at L~150 PAcDM gives a ~2.5% correction when r = 2%

# Conclusion

Large Scale Structure is sensitive to the dark sector dynamics

Acoustic Dark Oscillation suppresses the matter power spectrum

A smaller ratio of Cold DM

change the power-law growth of matter density spectrum

Having Dark Radiation change the expansion, different effects on CMB between free-streaming/self-scattering

May also change the small scale structure

Working on it now, stay tuned!

# Backup Slides



#### In the partially acoustic case



Acoustic Oscillation

 $\Rightarrow \delta_1 \gg \delta_2$ 

DM density contrast is determined by  $\chi_1$ 

$$\ddot{\delta}_1 + \frac{2}{\tau}\dot{\delta}_1 = -k^2\phi$$

$$k^{2}\phi \simeq -4\pi Ga^{2}(\delta_{1}\rho_{1} + \delta_{2}\rho_{2})$$
$$= -\frac{6}{\tau}(1-r)\delta_{1} \quad r \equiv \frac{\rho_{2}}{\rho_{DM}}$$

#### The < 100% CDM case

$$\ddot{\delta}_1 + \frac{2}{\tau}\dot{\delta}_1 = \frac{6}{\tau}(1-r)\delta_1 \quad \Rightarrow \delta_1 \propto \left(\frac{a}{a_{eq}}\right)^{1-0.6r+\mathcal{O}(r^2)}$$



#### Boltzmann Equation in Conformal Newtonian Gauge

$$\begin{split} \dot{\delta}_D &= -\theta_D + 3\dot{\psi} \quad \left(\frac{d\rho}{dt} = -\rho\nabla \cdot \vec{v}\right) \\ \dot{\theta}_D &= -\frac{\dot{a}}{a}\theta_D + k^2\psi + \underline{a}\Gamma(\theta_R - \theta_D) \qquad \Gamma \equiv \frac{1}{\langle p_D^2 \rangle} \frac{d\langle \delta p_D^2 \rangle}{dt} \\ \dot{\delta}_R &= -\frac{4}{3}\theta_R + 4\dot{\psi} \\ \dot{\theta}_R &= \frac{k^2}{4}\delta_R + k^2\psi + \underline{R\,a}\Gamma(\theta_D - \theta_R) \end{split}$$

$$\begin{array}{l} \theta_s \equiv \partial_i v_s^i \quad \hline \text{Velocity Divergent} & \hline \text{Metric Perturbation} \\ \\ ds^2 = a^2(\tau) [-(1+2\psi)d\tau^2 + (1-2\phi)\delta_{ij}dx^i dx^j] \\ \\ \hline \text{No free-streaming particle} => \boxed{\phi = \psi} \end{array}$$

#### Boltzmann Equation in Conformal Newtonian Gauge

$$\begin{split} \dot{\delta}_D &= -\theta_D + 3\dot{\psi} \quad \left(\frac{d\rho}{dt} = -\rho\nabla \cdot \vec{v}\right) \\ \dot{\theta}_D &= -\frac{\dot{a}}{a}\theta_D + k^2\psi + \underline{a\Gamma(\theta_R - \theta_D)} \qquad \Gamma \equiv \frac{1}{\langle p_D^2 \rangle} \frac{d\langle \delta p_D^2 \rangle}{dt} \\ \dot{\delta}_R &= -\frac{4}{3}\theta_R + 4\dot{\psi} \\ \dot{\theta}_R &= \frac{k^2}{4}\delta_R + k^2\psi + \underline{R\,a\Gamma(\theta_D - \theta_R)} \end{split}$$

Tightly coupled DM-DR (similar to the baryon-photon system):

$$\Gamma \gg H \Rightarrow a\Gamma \gg \tau^{-1}$$