
Partially Acoustic Dark Matter 
& Large Scale Structure

Yuhsin Tsai

JHEP1612(2016)108, Zackaria Chacko,  Yanou Cui,  Sungwoo Hong, and Takemichi Okui, YT

arXiv: 1611.05879,  Valentina Prilepina and YT

DM+DE+M/Anti-M asymmetry, NCTS,  Dec 31  2016

University of Maryland 



We’ve been trying very hard to see DM
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Maybe DM just doesn’t couple to SM?
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No, everything couples to gravity
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Dark sector in Large Scale Structure physics
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Precision measurement in cosmology 

2004

Matter Power Spectrum

Three ways to measure the spectrum

 Assuming a DM model (             ), fix
 the parameters using CMB, predict 
 the power spectrum today

 Map the galaxy distribution, then fit 
 the DM distribution

 Map the DM distribution directly
 using weak lensing experiments

⇤CDM



Precision measurement in cosmology 

2015

Matter Power Spectrum

Can start to cross check the CMB & WL results

2004



The Sigma8 problem
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~ amplitude of matter fluctuation 

on the scale of                     .

The smallest structure to study without 
significant non-linearity effects

�8

no
n-

lin
ea

r
8h�1Mpc

DES: 1507.05552



The Sigma8 problem
Two          measurements:  CMB +    CDM  vs. Weak Lensing

The CFHTLenS & CMB results
deviate by ~                .
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Results from galaxy counts
Planck 1303.5080 



H0 problem
Two H0 measurements

CMB +                . 
vs.

Local Measurements

⇤CDM

HPlanck
0 = 67.3± 0.7 kms�1Mpc�1

HHST
0 = 73.02± 1.79 kms�1Mpc�1

> 3� Discrepancy

Bernal et. al. 1607.05617  
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Puzzles of Large Scale Structure

Poulin et. al. 1606.02073 

+⇤CDM Comparing to LCDM model, 
we want to obtain a

Smaller density perturbation

Larger Hubble expansion

at the late time universe

?



        One solution: Partially Acoustic DM 

DISTRIBUTION OF GALAXIES IN OUR UNIVERSE. CREDIT: SDSS
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For the acoustic oscillation to exist 

We need the DM-DR scattering to remain non-decoupled

� ' ↵̂2 ln(↵̂�1)
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Same temp-dependence as Hubble 
in the radiation-dominant era

Easy to keep all the time,  if  � � H
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Tightly coupled dark radiation

  

  

� ' ↵̂2 ln(↵̂�1)TD

The same coupling keeps dark fermions/photon a tightly coupled fluid

massless

We need the DM-DR scattering to remain non-decoupled



Solving H0 problem with extra dark radiation
Bernal et. al. 1607.05617  

 Can explain the larger          by including                             dark radiation 
Adam Riess et.al. 1604.01424

�Ne↵ > 0.4H0



Dark fluid is better than FS-radiation

Baumann et. al. 1508.06342 

Planck TT, TE, and EE likelihoods

               bound on a tightly
coupled fluid is weaker
�Ne↵

(2�)



Reconcile H0, but makes sigma8 worse

Extra dark fluid
Increase radiation

density

Increase matter
density

Increase density
perturbation



Dark acoustic oscillation

Extra dark fluid

DM-DR scattering suppresses Sigma8



         Structure Formation with DAO 

A cartoon produced by the BOSS project showing the spheres of baryons around the initial dark matter clumps



Evolution of the Large Scale Structures
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In the tightly coupled DM-DR limit

We can simplify the evolution of DM perturbation 
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In the tightly coupled DM-DR limit

We can simplify the evolution of DM perturbation 
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Parametrize the ``mass”
of DM-DR fluid
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Radiation Domination , R << 1

Density perturbation oscillates => No structure grows
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The density perturbation oscillates as a harmonic oscillator!
Same physics as the baryon acoustic oscillation

Structure does not grow!

Enters horizon
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No oscillation, no damping from the DR scattering
Same structure formation as cold DM

Structure builds up

Enters horizon
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We need a small DM coupling for the right             suppression

DRDM

  

� �

Manuel A. Buen-Abad, Gustavo Marques-Tavares, and Martin Schmaltz (2015)

Julien Lesgourgues, Gustavo Marques-Tavares, and Martin Schmaltz (2015) 

↵̂ ⇠ 10�8.5

�8

Quasi-Acoustic Dark Matter



Partially-Acoustic  Dark Matter

DRCDM
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 Allows an analytical study 
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Solving Sigma8 problem with PAcDM
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 Need  ~2% acoustic DM  to solve the          problem �8

Solving Sigma8 problem with PAcDM
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Only need                            to obtain the 2% ratio
(assuming equal couplings)

⌦2

⌦1
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◆2

When both DM particles are WIMP-like and having
 thermal freeze out through a heavy mediator

2% density is easy to obtained

m1 ' 7m2



         Slowing Down the Structure Formation 

A cartoon produced by the BOSS project showing the spheres of baryons around the initial dark matter clumps



Correction to the power spectrum is smaller 
during the CMB time. Why?

Smaller suppression at the CMB time
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CDM

100% AcDM

Similar damping between today/CMB time 

In the Quasi-Acoustic Oscillation case

DRDM
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P (k) / �m(a = 1)2

CDM

Structure grows slower comparing to CDM
Smaller correction to the CMB spectrum 
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In the Partially-Acoustic Oscillation case



Correction to the CMB spectrum

CDM + Neff = 0.4

PAcDM r=2% + Neff = 0.4

PAcDM r=50% + Neff = 0.4
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The pressure from dark fluid suppresses the compression peaks 
and enhances the expansion peaks 

When r = 2%,  the correction to CMB is less then ~ 2%, 
smaller then > 5% error bar in Planck result
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A clue to even deeper physics?

Hierarchy
Problem

Large Scale 
Structure Puzzles

Non-minimal Dark Sector

Small Scale 
Structure Puzzles

Hidden Naturalness Models

Twin Higgs, Nnaturalness, …

arXiv: 1611.05879,  Valentina Prilepina and YT



CMB Lensing
Planck. 1502.01591 

The smallest error bar (Planck) is 5% at L~150
PAcDM gives a ~2.5% correction when r = 2% 
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Conclusion
 Large Scale Structure is sensitive to the dark sector dynamics 

Acoustic Dark Oscillation
suppresses the matter power spectrum

A smaller ratio of Cold DM
change the power-law growth of matter density spectrum

Having Dark Radiation
change the expansion, different effects on CMB between

free-streaming/self-scattering

 May also change the small scale structure 

Working on it now, stay tuned!
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In the partially acoustic case
Acoustic

Oscillation
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The < 100% CDM case
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Boltzmann Equation in 
Conformal Newtonian Gauge
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Boltzmann Equation in 
Conformal Newtonian Gauge
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a
✓D + k2 + a�(✓R � ✓D)

�̇R = �4

3
✓R + 4 ̇

✓̇R =
k2

4
�R + k2 +Ra�(✓D � ✓R)

✓
d⇢

dt
= �⇢r · ~v

◆

Tightly coupled DM-DR (similar to the baryon-photon system):
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